

Welcome to Anaconda’s documentation!

Contents:

	Introduction to Anaconda

	Anaconda Boot Options

	Anaconda Kickstart Documentation

	How to contribute

	Rules for commit messages

	Building a Release

	Brief description of DriverDisc version 3

	iSCSI and Anaconda

	Multipath and Anaconda

	The list-harddrives script

	User interaction config spec

	Testing

Introduction to Anaconda

Anaconda is the installation program used by Fedora, Red Hat Enterprise Linux
and some other distributions.

During installation, a target computer’s hardware is identified and configured
and the appropriate file systems for the system’s architecture are created.
Finally, anaconda allows the user to install the operating system software on
the target computer. anaconda can also upgrade existing installations of
earlier versions of the same distribution. After the installation is complete,
you can reboot into your installed system and continue doing customization
using the initial setup program.

anaconda is a fairly sophisticated installer. It supports installation from
local and remote sources such as CDs and DVDs, images stored on a hard drive,
NFS, HTTP, and FTP. Installation can be scripted with kickstart to provide a
fully unattended installation that can be duplicated on scores of machines. It
can also be run over VNC on headless machines. A variety of advanced storage
devices including LVM, RAID, iSCSI, and multipath are supported from the
partitioning program. anaconda provides advanced debugging features such as
remote logging, access to the python interactive debugger, and remote saving of
exception dumps.

Anaconda Boot Options

	Authors:	Anaconda Developers <anaconda-devel-list@redhat.com>
Will Woods <wwoods@redhat.com>
Anne Mulhern <amulhern@redhat.com>

These are the boot options that are useful when starting Anaconda. For more
information refer to the appropriate Installation Guide for your release and
to the Anaconda wiki [https://fedoraproject.org/wiki/Anaconda].

Anaconda bootup is handled by dracut, so most of the kernel arguments handled
by dracut are also valid. See dracut.kernel(7) [http://www.kernel.org/pub/linux/utils/boot/dracut/dracut.html#dracutcmdline7] for details on those options.

Throughout this guide, installer-specific options are prefixed with
inst (e.g. inst.ks). Options specified without the inst prefix are
recognized, but the prefix may be required in a future release.

Installation Source

Note

An installable tree is a directory structure containing installer
images, packages, and repodata. [1]

Usually this is either a copy of the DVD media (or loopback-mounted DVD
image), or the <arch>/os/ directory on the Fedora mirrors.

	[1]	an installable tree must contain a valid .treeinfo file
for inst.repo or inst.stage2 to work.

inst.repo

This gives the location of the Install Source - that is, the place where the
installer can find its images and packages. It can be specified in a few
different ways:

	inst.repo=cdrom

	Search the system’s CDROM drives for installer media. This is the default.

	inst.repo=cdrom:<device>

	Look for installer media in the specified disk device.

	inst.repo=hd:<device>:<path>

	Mount the given disk partition and install from ISO file on the given path.
This installation method requires ISO file, which contains an installable tree.

	inst.repo=[http,https,ftp]://<host>/<path>

	Look for an installable tree at the given URL.

	inst.repo=nfs:[<options>:]<server>:/<path>

	Mount the given NFS server and path. Uses NFS version 3 by default.

You can specify what version of the NFS protocol to use by adding nfsvers=X
to the options.

This accepts not just an installable tree directory in the <path> element,
but you can also specify an .iso file. That ISO file is then mounted and
used as the installation tree. This is often used for simulating a standard
DVD installation using a remote DVD.iso image.

Note

Disk devices may be specified with any of the following forms:

	Kernel Device Name

	/dev/sda1, sdb2

	Filesystem Label

	LABEL=FLASH, LABEL=Fedora, CDLABEL=Fedora\x2023\x20x86_64

	Filesystem UUID

	UUID=8176c7bf-04ff-403a-a832-9557f94e61db

Non-alphanumeric characters should be escaped with \xNN, where
‘NN’ is the hexidecimal representation of the character (e.g. \x20 for
the space character (‘ ‘).

inst.noverifyssl

Prevents Anaconda from verifying the ssl certificate for all HTTPS connections
with an exception of the additional kickstart repos (where –noverifyssl can be
set per repo).

inst.proxy

inst.proxy=PROXY_URL

Use the given proxy settings when performing an installation from a
HTTP/HTTPS/FTP source. The PROXY_URL can be specified like this:
[PROTOCOL://][USERNAME[:PASSWORD]@]HOST[:PORT].

inst.stage2

This specifies the location to fetch only the installer runtime image;
packages will be ignored. Otherwise the same as inst.repo.

inst.dd

This specifies the location for driver rpms. May be specified multiple times.
Locations may be specified using any of the formats allowed for
inst.repo.

inst.multilib

This sets dnf’s multilib_policy to “all” (as opposed to “best”).

Kickstart

inst.ks

Give the location of a kickstart file to be used to automate the install.
Locations may be specified using any of the formats allowed for inst.repo.

For any format the <path> component defaults to /ks.cfg if it is omitted.

For NFS kickstarts, if the <path> ends in /, <ip>-kickstart is added.

If inst.ks is used without a value, the installer will look for
nfs:<next_server>:/<filename>

	<next_server> is the DHCP “next-server” option, or the IP of the DHCP server itself

	<filename> is the DHCP “filename” option, or /kickstart/, and
if the filename given ends in /, <ip>-kickstart is added (as above)

For example:

	DHCP server: 192.168.122.1

	client address: 192.168.122.100

	kickstart file: nfs:192.168.122.1:/kickstart/192.168.122.100-kickstart

inst.ks.sendmac

Add headers to outgoing HTTP requests which include the MAC addresses of all
network interfaces. The header is of the form:

	X-RHN-Provisioning-MAC-0: eth0 01:23:45:67:89:ab

This is helpful when using inst.ks=http... to provision systems.

inst.ks.sendsn

Add a header to outgoing HTTP requests which includes the system’s serial
number. [2]

The header is of the form:

	X-System-Serial-Number: <serial>

	[2]	as read from /sys/class/dmi/id/product_serial

Network Options

Initial network setup is handled by dracut. For detailed information consult
the “Network” section of dracut.kernel(7) [http://www.kernel.org/pub/linux/utils/boot/dracut/dracut.html#dracutcmdline7].

The most common dracut network options are covered here, along with some
installer-specific options.

ip

Configure one (or more) network interfaces. You can use multiple ip
arguments to configure multiple interfaces, but if you do you must specify an
interface for every ip= argument, and you must specify which interface
is the primary boot interface with bootdev.

Accepts a few different forms; the most common are:

	ip=<dhcp|dhcp6|auto6|ibft>

	Try to bring up every interface using the given autoconf method. Defaults
to ip=dhcp if network is required by inst.repo, inst.ks, inst.updates,
etc.

	ip=<interface>:<autoconf>

	Bring up only one interface using the given autoconf method, e.g.
ip=eth0:dhcp.

	ip=<ip>::<gateway>:<netmask>:<hostname>:<interface>:none

	Bring up the given interface with a static network config, where:

	<ip>

	The client IP address. IPv6 addresses may be specified by putting
them in square brackets, like so: [2001:DB8::1].

	<gateway>

	The default gateway. IPv6 addresses are accepted here too.

	<netmask>

	The netmask (e.g. 255.255.255.0) or prefix (e.g. 64).

	<hostname>

	Hostname for the client machine. This component is optional.

	ip=<ip>::<gateway>:<netmask>:<hostname>:<interface>:<autoconf>:<mtu>

	Bring up the given interface with the given autoconf method, but override the
automatically obtained IP/gateway/etc. with the provided values.

Technically all of the items are optional, so if you want to use dhcp but also
set a hostname you can use ip=::::<hostname>::dhcp.

nameserver

Specify the address of a nameserver to use. May be used multiple times.

bootdev

Specify which interface is the boot device. Required if multiple ip=
options are used.

ifname

	ifname=<interface>:<MAC>

	Assign the given interface name to the network device with the given MAC. May
be used multiple times.

Note

Dracut applies ifname option (which might involve renaming the device with
given MAC) in initramfs only if the device is activated in initramfs stage
(based on ip= option). If it is not the case, installer still binds the
current device name to the MAC by adding HWADDR setting to the ifcfg file of
the device.

inst.dhcpclass

Set the DHCP vendor class identifier [#dhcpd]. Defaults to anaconda-$(uname -srm).

	[3]	ISC dhcpd will see this value as “option vendor-class-identifier”.

Console / Display Options

console

This is a kernel option that specifies what device to use as the primary
console. For example, if your console should be on the first serial port, use
console=ttyS0.

You can use multiple console= options; boot messages will be displayed on
all consoles, but anaconda will put its display on the last console listed.

Implies inst.text.

inst.lang

Set the language to be used during installation. The language specified must
be valid for the lang kickstart command.

inst.singlelang

Install in single language mode - no interactive options for installation language
and language support configuration will be available.
If a language has been specified via the inst.lang boot option
or the lang kickstart command it will be used.
If no language is specified Anaconda will default to en_US.UTF-8.

Note

Atomic installations always run in single language mode.

inst.geoloc

Configure geolocation usage in Anaconda. Geolocation is used to pre-set
language and time zone.

	inst.geoloc=0

	Disables geolocation.

	inst.geoloc=provider_fedora_geoip

	Use the Fedora GeoIP API (default).

	inst.geoloc=provider_hostip

	Use the Hostip.info GeoIP API.

inst.keymap

Set the keyboard layout to use. The layout specified must be valid for use with
the keyboard kickstart command.

inst.cmdline

Run the installer in command-line mode. This mode does not
allow any interaction; all options must be specified in a kickstart file or
on the command line.

inst.graphical

Run the installer in graphical mode. This is the default.

inst.text

Run the installer using a limited text-based UI. Unless you’re using a
kickstart file this probably isn’t a good idea; you should use VNC instead.

inst.noninteractive

Run the installer in a non-interactive mode. This mode does not allow any
user interaction and can be used with graphical or text mode. With text
mode it behaves the same as the inst.cmdline mode.

inst.resolution

Specify screen size for the installer. Use format nxm, where n is the
number of horizontal pixels, m the number of vertical pixels. The lowest
supported resolution is 800x600.

inst.vnc

Run the installer GUI in a VNC session. You will need a VNC client application
to interact with the installer. VNC sharing is enabled, so multiple clients
may connect.

A system installed with VNC will start in text mode (runlevel 3).

inst.vncpassword

Set a password on the VNC server used by the installer.

inst.vncconnect

	inst.vncconnect=<host>[:<port>]

	Once the install starts, connect to a listening VNC client at the given host.
Default port is 5900.

Use with vncviewer -listen.

inst.headless

Specify that the machine being installed onto doesn’t have any display
hardware, and that anaconda shouldn’t bother looking for it.

inst.xdriver

Specify the X driver that should be used during installation and on the
installed system.

inst.usefbx

Use the framebuffer X driver (fbdev) rather than a hardware-specific driver.

Equivalent to inst.xdriver=fbdev.

inst.sshd

Start up sshd during system installation. You can then ssh in while the
installation progresses to debug or monitor its progress.

Caution

The root account has no password by default. You can set one using
the sshpw kickstart command.

Debugging and Troubleshooting

inst.rescue

Run the rescue environment. This is useful for trying to diagnose and fix
broken systems.

inst.updates

Give the location of an updates.img to be applied to the installer runtime.
Locations may be specified using any of the formats allowed for inst.repo.

For any format the <path> component defaults to /updates.img if it is
omitted.

inst.nokill

A debugging option that prevents anaconda from and rebooting when a fatal error
occurs or at the end of the installation process.

inst.loglevel

	inst.loglevel=<debug|info|warning|error|critical>

	Set the minimum level required for messages to be logged on a terminal (log
files always contain messages of all levels). The default value is info.

inst.noshell

Do not put a shell on tty2 during install.

inst.syslog

	inst.syslog=<host>[:<port>]

	Once installation is running, send log messages to the syslog process on
the given host. The default port is 514 (UDP).

Requires the remote syslog process to accept incoming connections.

inst.virtiolog

Forward logs through the named virtio port (a character device at
/dev/virtio-ports/<name>).

If not provided, a port named org.fedoraproject.anaconda.log.0
will be used by default, if found.

See the Anaconda wiki logging page [https://fedoraproject.org/wiki/Anaconda/Logging] for more info on setting up logging via virtio.

inst.zram

Forces/disables (on/off) usage of zRAM swap for the installation process.

Boot loader options

extlinux

Use extlinux as the bootloader. Note that there’s no attempt to validate that
this will work for your platform or anything; it assumes that if you ask for it,
you want to try.

leavebootorder

Boot the drives in their existing order, to override the default of booting into
the newly installed drive on Power Systems servers and EFI systems. This is
useful for systems that, for example, should network boot first before falling
back to a local boot.

Storage options

inst.nodmraid

Disable support for dmraid.

Warning

This option is never a good idea! If you have a disk that is
erroneously identified as part of a firmware RAID array, that means
it has some stale RAID metadata on it which must be removed using
an appropriate tool (dmraid and/or wipefs).

inst.nompath

Disable support for multipath devices. This is for systems on which a
false-positive is encountered which erroneously identifies a normal block device
as a multipath device. There is no other reason to use this option.

Warning

Not for use with actual multipath hardware! Using this to attempt
to install to a single path of a multipath is ill-advised, and not
supported.

inst.gpt

Prefer creation of GPT disklabels.

Other options

inst.selinux

Enable SELinux usage in the installed system (default). Note that when used as a
boot option, “selinux” and “inst.selinux” are not the same. The “selinux” option
is picked up by both the kernel and Anaconda, but “inst.selinux” is processed
only by Anaconda. So when “selinux=0” is used, SELinux will be disabled both in
the installation environment and in the installed system, but when
“inst.selinux=0” is used SELinux will only be disabled in the installed system.
Also note that while SELinux is running in the installation environment by
default, it is running in permissive mode so disabling it there does not make
much sense.

inst.nosave

Controls what installation results should not be saved to the installed system,
valid values are: “input_ks”, “output_ks”, “all_ks”, “logs” and “all”.

	input_ks

	Disables saving of the input kickstart (if any).

	output_ks

	Disables saving of the output kickstart generated by Anaconda.

	all_ks

	Disables saving of both input and output kickstarts.

	logs

	Disables saving of all installation logs.

	all

	Disables saving of all kickstarts and all logs.

Multiple values can be combined as a comma separated list, for example: input_ks,logs

Note

The nosave option is meant for excluding files from the installed system that can’t
be removed by a kickstart %post script, such as logs and input/output kickstarts.

Third-party options

Since Fedora 19 the Anaconda installer supports third-party extensions called
addons. The addons can support their own set of boot options which should be
documented in their documentation or submitted here.

inst.kdump

inst.kdump_addon=on/off

Enable kdump anaconda addon to setup the kdump service.

Deprecated Options

These options should still be accepted by the installer, but they are
deprecated and may be removed soon.

method

This is an alias for inst.repo.

repo=nfsiso:...

The difference between an installable tree and a dir with an .iso file is
autodetected, so this is the same as inst.repo=nfs:...

dns

Use nameserver instead. Note that nameserver does not
accept comma-separated lists; use multiple nameserver options instead.

netmask, gateway, hostname

These can be provided as part of the ip option.

ip=bootif

A PXE-supplied BOOTIF option will be used automatically, so there’s no need

ksdevice

	Not present

	The first device with a usable link is used

	ksdevice=link

	Ignored (this is the same as the default behavior)

	ksdevice=bootif

	Ignored (this is the default if BOOTIF= is present)

	ksdevice=ibft

	Replaced with ip=ibft. See ip

	ksdevice=<MAC>

	Replaced with BOOTIF=${MAC/:/-}

	ksdevice=<DEV>

	Replaced with bootdev

Removed Options

These options are obsolete and have been removed.

askmethod, asknetwork

Anaconda’s initramfs is now is completely non-interactive, so these have been
removed.

Instead, use inst.repo or specify appropriate Network Options.

blacklist, nofirewire

modprobe handles blacklisting kernel modules on its own; try
modprobe.blacklist=<mod1>,<mod2>...

You can blacklist the firewire module with modprobe.blacklist=firewire_ohci.

serial

This option was never intended for public use; it was supposed to be used to
force anaconda to use /dev/ttyS0 as its console when testing it on a live
machine.

Use console=ttyS0 or similar instead. See console for details.

updates

Use inst.updates instead.

essid, wepkey, wpakey

Dracut doesn’t support wireless networking, so these don’t do anything.

ethtool

Who needs to force half-duplex 10-base-T anymore?

gdb

This was used to debug loader, so it has been removed. There are plenty of
options for debugging dracut-based initramfs - see the dracut “Troubleshooting” guide.

inst.mediacheck

Use the dracut option rd.live.check instead.

ks=floppy

We no longer support floppy drives. Try inst.ks=hd:<device> instead.

display

For remote display of the UI, use inst.vnc.

utf8

All this option actually did was set TERM=vt100. The default TERM setting
works fine these days, so this was no longer necessary.

noipv6

ipv6 is built into the kernel and can’t be removed by anaconda.

You can disable ipv6 with ipv6.disable=1. This setting will be carried onto
the installed system.

upgradeany

Anaconda doesn’t handle upgrades anymore.

inst.repo=hd:<device>:<path> for installable tree

Anaconda can’t use this option with installable tree but only with an ISO file.

Anaconda Kickstart Documentation

	Authors:	Brian C. Lane <bcl@redhat.com>

Anaconda uses kickstart [https://github.com/rhinstaller/pykickstart] to automate
installation and as a data store for the user interface. It also extends the kickstart
commands documented here [https://pykickstart.readthedocs.io/]
by adding a new kickstart section named %anaconda where commands to control the behavior
of Anaconda will be defined.

pwpolicy

	program: pwpolicy <name> [--minlen=LENGTH] [--minquality=QUALITY] [--strict|notstrict] [--emptyok|notempty] [--changesok|nochanges]

	Set the policy to use for the named password entry.

	name

	Name of the password entry, currently supported values are: root, user and luks

	--minlen (8)

	Minimum password length. This is passed on to libpwquality.

	--minquality (50)

	Minimum libpwquality to consider good. When using --strict it will not allow
passwords with a quality lower than this.

	--strict (DEFAULT)

	Strict password enforcement. Passwords not meeting the --minquality level will
not be allowed.

	--notstrict

	Passwords not meeting the --minquality level will be allowed after Done is clicked
twice.

	--emptyok (DEFAULT)

	Allow empty password.

	--notempty

	Don’t allow an empty password

	--changesok

	Allow UI to be used to change the password/user when it has already been set in
the kickstart.

	--nochanges (DEFAULT)

	Do not allow UI to be used to change the password/user if it has been set in
the kickstart.

The defaults for these are set in the /usr/share/anaconda/interactive-defaults.ks file
provided by Anaconda. If a product, such as Fedora Workstation, wishes to override them
then a product.img needs to be created with a new version of the file included.

When using a kickstart the defaults can be overridded by placing a %anaconda section into
the kickstart, like this:

%anaconda
pwpolicy root --minlen=10 --minquality=60 --strict --notempty --nochanges
%end

Note

The commit message for pwpolicy included some incorrect examples.

Contribution guidelines

How to Contribute to the Anaconda Installer (the short version)

a) I want to contribute to the upstream Anaconda Installer (used in Fedora):
- open a pull request for the <next Fedora number>-devel branch (f25-devel, etc.)
- check the Commit Messages section below for how to format your commit messages

b) I want to contribute to the RHEL Anaconda installer:
- open a pull request for the <RHEL number>-branch branch (rhel7-branch, etc.)
- check the Commits for RHEL Branches section below for how to format your commit messages

If you want to contribute a change to both the upstream and RHEL Anaconda then follow both a) and b) separately.

Anaconda Installer Branching Policy (the long version)

The basic premise is that there are the following branches:
- master
- unstable
- <next fedora number>-release
- <next fedora number>-devel

Master branch never waits for any release-related processes to take place. The spec file will remain there to track dependencies. Master branch is not associated with Fedora Rawhide builds anymore. Its purpose is to function purely as an upstream branch.

The unstable branch is used for making periodic Anaconda releases for Rawhide (or possibly anyone else wanting to taste the cutting edge).

Concerning current RHEL branches, they are too divergent to integrate into this scheme. Thus, commits are merged onto, and builds are done on the RHEL branches.
In this case, two pull requests will very likely be needed:
- one for the rhel<number>-branch
- one for the master or <fedora number>-devel branch (if the change is not RHEL only)

Releases

For specific Fedora version, the release process is as follows:
- <next Fedora number>-devel is merged onto <next Fedora number>-release
- a release commit is made (which bumps version in spec file) & tagged

Concerning Fedora Rawhide, the release process is (very) slightly different:
- master is merged onto the unstable branch
- a release commit is made (which bumps version in spec file) & tagged

Concerning the <next Fedora number> branches (which could also be called next stable release if we wanted to decouple our versioning from Fedora in the future):
- work which goes into the next Fedora goes to <next Fedora number>-devel, which is periodically merged back to master
- this way we can easily see what was developed in which Fedora timeframe and possibly due to given Fedora testing phase feedback (bugfixes, etc.)
- stuff we don’t want to go to the next Fedora (too cutting edge, etc.) goes only to master branch
- commits specific to a given Fedora release (temporary fixes, etc.) go only to the <next Fedora number>-release branch
- the <next Fedora number>-release branch also contains release commits

Example for the F25 cycle

	master

	unstable

	f25-devel

	f25-release

This would continue until F25 is released, after which we:
- drop the f25-devel branch
- keep f25-release as an inactive record of the f25 cycle
- branch f26-devel and f26-release from the master branch

This will result in the following branches for the F26 cycle:
- master
- unstable
- f26-devel
- f26-release

Guidelines for Commits

Commit Messages

The first line should be a succinct description of what the commit does. If your commit is fixing a bug in Red Hat’s bugzilla instance, you should add `` (#123456)`` to the end of the first line of the commit message. The next line should be blank, followed (optionally) by a more in-depth description of your changes. Here’s an example:

Stop kickstart when space check fails

Text mode kickstart behavior was inconsistent, it would allow an
installation to continue even though the space check failed. Every other
install method stops, letting the user add more space before continuing.

Commits for RHEL Branches

If you are submitting a patch for any rhel-branch, the last line of your commit must identify the bugzilla bug id it fixes, using the Resolves or Related keyword, e.g.:
Resolves: rhbz#111111

or

Related: rhbz#1234567

Use Resolves if the patch fixes the core issue which caused the bug.
Use Related if the patch fixes an ancillary issue that is related to, but might not actually fix the bug.

Pull Request Review

Please note that there is a minimum review period of 24 hours for any patch. The purpose of this rule is to ensure that all interested parties have an opportunity to review every patch. When posting a patch before or after a holiday break it is important to extend this period as appropriate.

All subsequent changes made to patches must be force-pushed to the PR branch before merging it into the main branch.

Merging examples

Merging the Fedora devel branch back to the master branch

(Fedora 25 is used as an example, don’t forget to use appropriate Fedora version.)

Checkout and pull the master branch:

git checkout master
git pull

Merge the Fedora devel branch to the master branch:

git merge --no-ff f25-devel

Push the merge to the remote:

git push origin master

Merging a GitHub pull request

(Fedora 25 is used as an example, don’t forget to use appropriate Fedora version.)

Press the green Merge pull request button on the pull request page.

If the pull request has been opened for:
- master
- f25-release
- rhel7-branch
Then you are done.

If the pull request has been opened for the f25-devel branch, then you also need to merge the f25-devel
branch back to master once you merge your pull request (see “Merging the Fedora devel branch back to the master branch” above).

Merging a topic branch manually

(Fedora 25 is used as an example, don’t forget to use appropriate Fedora version.)

Let’s say that there is a topic branch called “fix_foo_with_bar” that should be merged to a given Anaconda non-topic branch.

Checkout the given target branch, pull it and merge your topic branch into it:

git checkout <target branch>
git pull
git merge --no-ff fix_foo_with_bar

Then push the merge to the remote:

git push origin <target branch>

If the <target branch> was one of:
- master
- f25-release
- rhel7-branch
Then you are done.

If the pull request has been opened for the f25-devel branch, then you also need to merge the f25-devel
branch back to master once you merge your pull request (see “Merging the Fedora devel branch back to the master branch” above).

Rules for commit messages

git commit messages for anaconda should follow a consistent format. The
following are rules to follow when committing a change to the git repo:

	The first line of the commit message should be a short summary of the
change in the patch. We also place (#BUGNUMBER) at the end of this
line to indicate the bugzilla.redhat.com bug number addressed in this
patch. The bug number is optional since there may be no bug number,
but if you have one you are addressing, please include it on the
summary line. Lastly, the summary lines need to be short. Ideally
less than 75 characters, but certainly not longer than 80.

Here are acceptable first lines for git commit messages:

Check partition and filesystem type on upgrade (#123456)
Fix bootloader configuration setup on ppc64 (#987654)
Introduce a new screen for setting your preferred email client

The last one would be a new feature that we didn’t have a bug number
for.

	The main body of the commit message should begin TWO LINES below the
summary line you just entered (that is, there needs to be a blank line
between the one line summary and the start of the long commit message).
Please document the change and explain the patch here. Use multiple
paragraphs and keep the lines < 75 chars. DO NOT indent these lines.
Everything in the git commit message should be left justified. PLEASE
wrap long lines. If you don’t, the ‘git log’ output ends up looking
stupid on 80 column terminals.

	For RHEL bugs, all commits need to reference a bug number. You may
follow one of two formats for specifying the bug number in a RHEL commit.

	Put the bug number on the summary line in (#BUGNUMBER) format. Bugs
listed this way are treated as ‘Resolves’ patches in the RHEL
universe.

	If you have a patch that is Related to or Conflicts with another bug,
you may add those lines to the end of the long commit message in this
format:

Related: rhbz#BUGNUMBER
Conflicts: rhbz#BUGNUMBER
Resolves: rhbz#BUGNUMBER

These entries should come at the end of the long commit message and
must follow the format above. You may have as many of these lines as
appropriate for the patch.

	Patches that are ‘Resolves’ patches have two methods to specify the
bug numbers, but Related and Conflicts can only be listed in the long
commit message.

On RHEL branches, the ‘bumpver’ process will verify that each patch for
the release references a RHEL bug number. The scripts/makebumpver script
will extract the bug numbers from RHEL branch commits and do two things.
First, it verifies that the bug referenced is a RHEL bug and in correct
states. Second, it adds the appropriate Resolves/Related/Conflicts line
to the RPM spec file changelog.

It is recommended to use the pre-push hook checking commit messages for RHEL bug
numbers and checking the referenced bugs for all the necessary acks. To make it
work, just copy the scripts/githooks/pre-push and
scripts/githooks/check_commit_msg.sh scripts to the .git/hooks/ directory.

Building a Release

When the project is ready for a new release, follow these steps to build a new
release tar.gz file and sign a new release tag in git. This requires that you
have a zanata account, and have permission to push the new .pot file to the
branch you are building. See the translations.txt file for more details.

	git clean -d -x -f

	./autogen.sh && ./configure

	make bumpver

	VERSION=$(grep ^AC_INIT configure.ac | awk '{print $2}' | tr -d '[],')

	git commit -am "New version - $VERSION"

	make release

Check that the commit looks correct and push the new release with:

	git push && git push --tags

The anaconda-$VERSION.tar.gz file and anaconda.spec can now be used to by
fedpkg to create a new anaconda rpm.

Brief description of DriverDisc version 3

For a new major release we decided to introduce a new version of DriverDisc
feature to ensure the smoothest vendor and user experience possible. We had
many reasons for it:

	the old DD didn’t support multiple architectures

	the old DD wasn’t particulary easy to create

	the old DD had two copys of modules, one for anaconda and one for
instalation

	the modules in old DD weren’t checked for kernel version

We also changed the feature internal code to enable some functionality that
was missing from the old version. More about it below.

Devices which can contain DDs

The best place to save your DriverDisc to is USB flash device. We also support
(or plan to) IDE and SATA block devices with or without partitions, DriverDisc
image stored on block device, initrd overlay (see documentation below) and for
special cases even network retrieval of DriverDisc image.

What can be updated using DDs?

All drivers for block devices, which weren’t used for retrieving DriverDiscs,
the same applies also for network drivers eg. you cannot upgrade network
driver for device, which was used prior the DriverDisc extraction.

RPMs for installation. If the DriverDisc repo contains newer package, than the
official repository, the newer package will get used.

We also plan to support anaconda’s updates.img placement on the DriverDisc to
update stage2 behaviour of anaconda.

Selecting DD manually

Use the ‘inst.dd’ kernel command line option to trigger DD mode.
If no argument is specified, the UI will prompt for the location of the driver
rpm. Otherwise, the rpm will be fetched from the specified location.

Please consult the appropriate Installer Guide for further information.

Automatic DriverDisc detection

Anaconda automatically looks for driverdiscs during startup.

The DriverDisc has to be on partition or filesystem which has been labeled
with ‘OEMDRV’ label.

DDv3 structure

The new DriverDisc format uses simple layout which can be created on top of
any anaconda’s supported filesystem (vfat, squashfs, ext2 and ext3).

/
|rhdd3 - DD marker, contains the DD's description string
/rpms
 | /i386 - contains RPMs for this arch and acts as package repo
 | /i586
 | /x86_64
 | /ppc
 | /... - any other architecture the DD provides drivers for

There is a special requirement for the RPMs used to update drivers. Anaconda
picks up only RPMs which provide “kernel-modules = <running kernel version>”.

Initrd overlay driverdisc image

We have designed another possible way of providing updates in network boot
environments. It is possible to update all modules this way, so if special
storage module (which gets used early) needs to be updated, this is the
preffered way.

This kind of driverdisc image is applied over the standard initrd and so has
to respect some rules.

	All updated modules belong to /lib/modules/<kernel version>/.. according to
their usual location

	All new modules belong to /lib/modules/<kernel version>/updates

	All new firmware files belong to /lib/firmware

	The rpm repo with updated packages belongs to /tmp/DD-initrd/

	The (empty) trigger file /.rundepmod must be present

Firmware and module update

The firmware files together with all .ko files from the RPMs are exploded to
special module location, which has preference over built-in Anaconda modules.

Anaconda doesn’t use built-in modules (except some storage modules needed for
the DD to function properly) during the DriverDisc mode, so even in case when
you are updating some modules with second (or later) DriverDisc, the updated
modules will be loaded. There is one exception though, if your module depends
on a module which is only present in built-in module directory, that built-in
module gets also loaded.

Package installation

It is also possible to include arbitrary packages on the DriverDisc media and
mark them for installation. You just have to include the package name in the
package repo for correct architecture and mark it as mandatory.

Summary

This new DriverDisc format should simplify the DD creation and usage a lot. We
will gladly hear any comments as this is partially still work in progress.

iSCSI and Anaconda

	Authors:	Ales Kozumplik <akozumpl@redhat.com>

Introduction

iSCSI device is a SCSI device connected to your computer via a TCP/IP
network. The communication can be handled either in hardware or in software, or
as a hybrid — part software, part hardware.

The terminology:

	‘initiator’, the client in the iscsi connection. The computer we are running
Anaconda on is typically an initiator.

	‘target’, the storage device behind the Network. This is where the data is
physically stored and read from. You can turn any Fedora/RHEL machine to a
target (or several) via scsi-target-utils.

	‘HBA’ or Host Bus Adapter. A device (PCI card typically) you connect to a
computer. It acts as a NIC and if you configure it properly it transparently
connects to the target when started and all you can see is a block device on
your system.

	‘software initiator’ is what you end up with if you emulate most of what HBA is
doing and just use a regular NIC for the iscsi communication. The modern Linux
kernel has a software initiator. To use it, you need the Open-ISCSI software
stack [1, 2] installed. It is known as iscsi-initiator-utils in Fedora/RHEL.

	‘partial offload card’. Similar to HBA but needs some support from kernel and
iscsi-initiator-utils. The least pleasant to work with, particularly because
there is no standardized amount of the manual setting that needs to be done
(some connect to the target just like HBAs, some need you to bring their NIC
part up manually etc.). Partial offload cards exist to get better performing
I/O with less processor load than with software initiator.

	‘iBFT’ as in ‘Iscsi Boot Firmware Table’. A table in the card’s bios that
contains its network and target settings. This allows the card to configure
itself, connect to a target and boot from it before any operating system or a
bootloader has the chance. We can also read this information from
/sys/firmware/ibft after the system starts and then use it to bring the card
up (again) in Linux.

	‘CHAP’ is the authentication used for iSCSI connections. The authentication
can happen during target discovery or target login or both. It can happen in
both directions too: the initiator authenticates itself to the target and the
target is sometimes required to authenticate itself to the initiator.

What is expected from Anaconda

We are expected to:

	use an HBA like an ordinary disk. It is usually smart enough to bring itself
up during boot, connect to the target and just act as an ordinary disk.

	allow creating new software initiator connections in the UI, both IPv4 and IPv6.

	facilitate bringing up iBFT connections for partial offload cards.

	install the root and/or /boot filesystems on any iSCSI initiator known to us

	remember to install dracut-network if we are booting from an iSCSI initiator that
requires iscsi-initiator-utils in the ramdisk (most of them do)

	boot from an iSCSI initiator using dracut, this requires generating an
appropriate set of kernel boot arguments for it [3].

How Anaconda handles iscsi

iSCSI comes into play several times while Anaconda does its thing:

In loader, when deciding what NIC we should setup, we check if we have iBFT
information from one of the cards. If we do we set that card up with what we
found in the table, it usually boils down to an IPv4 static or IPv4
DHCP-obtained address. [4][5]

Next, after the main UI startup during filtering (or storage scan, whatever
comes first) we startup the iscsi support code in Anaconda [6]. This currently
involves:
- manually modprobing related kernel modules
- starting the iscsiuio daemon (required by some partial offload cards)
- most importantly, starting the iscsid daemon

All iBFT connections are brought up next by looking at the cards’ iBFT data, if
any. The filtering screen has a feature to add advanced storage devices,
including iSCSI. Both connection types are handled by libiscsi (see below). The
brought up iSCSI devices appear as /dev/sdX and are treated as ordinary block
devices.

When DeviceTree scans all the block devices it uses the udev data (particularly
the ID_BUS and ID_PATH keys) to decide if the device is an iscsi disk. If it is,
it is represented with an iScsiDiskDevice class instance. This helps Anaconda
remember that:

	we need to install dracut-network so the generated dracut image is able to
bring up the underlying NIC and establish the iscsi connection.

	if we are booting from the device we need to pass dracut a proper set of
arguments that will allow it to do so.

Libiscsi

How are iSCSI targets found and logged into? Originally Anaconda was just
running iscsiadm as an external program through execWithRedirect(). This
ultimately proved awkward especially due to the difficulties of handling the
CHAP passphrases this way. That is why Hans de Goede <hdegoede@redhat.com>, the
previous maintainer of the Anaconda iscsi subsystem decided to write a better
interface and created libiscsi (do not confuse this with the libiscsi.c in
kernel). Currently libiscsi lives as a couple of patches in the RHEL6
iscsi-initiator-utils CVS (and in Fedora package git, in somewhat outdated
version). Since Anaconda is libiscsi’s only client at the moment it is
maintained by the Anaconda team.

The promise of libiscsi is to provide a simple C/Python API to handle iSCSI
connections while being somewhat stable and independent of the changes in the
underlying initiator-utils (while otherwise being tied to it on the
implementation level).

And at the moment libiscsi does just that. It has a set of functions to discover
and login to targets software targets. It supports making connections through
partial offload interfaces, but the only discovery method supported at this
moment is through firmware (iBFT). Its public data structures are independent of
iscsi-initiator-utils. And there is some python boilerplate that wraps the core
functions so we can easily call those from Anaconda.

To start nontrivial hacking on libiscsi prepare to spend some time familiarizing
yourself with the iscsi-initiator-utils internals (it is complex but quite
nice).

Debugging iSCSI bugs

There is some information in anaconda.log and storage.log but libiscsi itself is
quite bad at logging. Most times useful information can be found by sshing onto
the machine and inspecting the output of different iscsiadm commands [2][7],
especially querying the existing sessions and known interfaces.

If for some reason the DeviceTree fails at recognizing iscsi devices as such,
‘udevadm info –exportdb’ is of interest.

The booting problems are either due to incorrectly generated dracut boot
arguments or they are simply dracut bugs.

Note that many of the iscsi adapters are installed in different Red Hat machines
and so the issues can often be reproduced and debugged.

Future of iSCSI in Anaconda

	extend libiscsi to allow initializing arbitrary connections from a partial
offload card. Implement the Anaconda UI to utilize this. Difficulty hard.

	extend libiscsi with device binding support. Difficulty hard.

	work with iscsi-initiator-utils maintainer to get libiscsi.c upstream and then
to rawhide Fedora. Then the partial offload patches in the RHEL6 Anaconda can
be migrated there too and partial offload can be tested. This is something
that needs to be done before RHEL7. Difficulty medium.

	improve libiscsi’s logging capabilities. Difficulty easy.

	[1]	http://www.open-iscsi.org/

	[2]	/usr/share/doc/iscsi-initiator-utils-6.*/README

	[3]	man 7 dracut.kernel

	[4]	Anaconda git repository, anaconda/loader/ibft.c

	[5]	Anaconda git repository, anaconda/loader/net.c, chooseNetworkInterface()

	[6]	Anaconda git repository, anaconda/storage/iscsi.py

	[7]	‘man 8 iscsiadm’

Multipath and Anaconda

	Authors:	Ales Kozumplik <akozumpl@redhat.com>

Introduction

If there are two block devices in your /dev for which udev reports the same
‘ID_SERIAL’ then you can create a certain device mapper device which arbitrarily
uses those devices to access the physical device. And that is Multipath [1].

For instance, suppose there are:

/dev/sda, with ID_SERIAL of 20090ef12700001d2, and
/dev/sdb, with the same ID_SERIAL.

Those are probably some adapters in the system that just connect your box to a
storage area network (SAN) somewhere. There are perhaps two cables, one for sda,
one for sdb, and if one of the cables gets cut the other can still transmit
data. Normally the system won’t recognize that sda and sdb have this special
relation to each other, but by creating a suitable device map using multipath
tools [2] we can create a DM device /dev/mapper/mpatha and use it for storing
and retrieving data.

The device mapper then automatically routes IO requests to /dev/mapper/mpatha to
either sda or sdb depending on the load of the line or network congestion on the
particular network etc.

The nomenclature I will use here is:
- ‘multipath device’ for the smart /dev/mapper/mpathX device.
- ‘multipath member device’ for the ‘/dev/sdX’ devices. Also ‘a path’.

What is expected from Anaconda

Anaconda is expected to:
- detect that there are multipath devices present
- coalesce all relevant (e.g. exclusiveDisks) multipath devices.
- only let the user interact with the multipath devices in filtering,

cleardiskssel and partition screen, that is once we know ‘sdc’ and ‘sdd’ are
part of ‘mpathb’ show only ‘mpathb’ and never the paths.

	install bootloader and boot from an mpath device

	make it happen so all the multipath devices (carrying or not the root
filesystem) we used for installation are correctly coalesced in the booted
system. This is achieved by generating a suitable /etc/multipath.conf and
writing it into sysroot.

	be able to refer to mpath devices from kickstart, either by name like ‘mpatha’
or by their id like ‘disk/by-id/scsi-20090ef12700001d2’

How Anaconda handles multipath

To detect presence of multipath devices we rely on multipath tools. The same we
do for coalescing, see pyanaconda/storage/devicelibs/mpath.py, the file that
provides some abstraction from mpath tools. During the device scan we use the
‘multipath -d’ output to find out what devices are going to end up as multipath
members. The MultipathTopology object also enhances the multipath member’s udev
dictionaries with ‘ID_FS_TYPE’ set to ‘multipath_member’ (yes, this is a hack
surviving from the original mpath implementation, and righteous is he who
eradicates it). This information is picked up by DeviceTree when populating
itself. Meaning, if ‘sda’ and ‘sdb’ are multipath member devices DeviceTree
gives them MultipathMember format and creates one MultipathDevice for them (we
know its name from ‘multipath -d’). We end up with:

DiskDevice ‘sda’, format ‘MultipathMember’
DiskDevice ‘sdb’, format ‘MultipathMember’
MultipathDevice ‘mpatha’, parents are ‘sda’ and ‘sdb’.

From then on, Anaconda only deals with the MultipathDevice and generally leaves
anything with ‘MultipathMember’ format alone (understand, this is an inert
format that really is not there but we use it just to mark the device as
“useless beyond a multipath member”, kind of like MDRaidMember).

Partition happens over the multipath device and during the preinstallconfig step
/mnt/sysimage/etc/multipath.conf is created and filled with information about
the coalesced devices. This is handled in the Storage.write() method. It is
important this file and /etc/multipath/wwids (autogenerated by mpath tools)
make it to the sysimage before the dracut image is generated.

Debugging multipath bugs

Unlike with iSCSI, to reproduce a multipath bug one does not need the same
specific hardware as the reporter. Just found any box connected to a multipathed
SAN and you are fine (at the moment, connecting to the same iSCSI target through
its IPv4 and IPv6 address also produces a multipathed device).

On top of that, much of the necessary information is already included in the
anaconda logs or can be easily extracted from the reporter. The things to
particularly look at are:

	storage.log, the output around ‘devices to scan for multipath’ and ‘devices
post multipath scan’. The latter shows a triple with regular disks, disks
comprising multipath devices and partitions. This helps you quickly find out
what the target system is about.

	this information is also in program.log’s calls to ‘multipath’ [3]. If mpath
devices are mysteriously appearing/disappearing between filtering and
partitioning screens look at those. ‘multipath -ll’ is called to display
currently coalesced mpath devices, ‘multipath -d’ is called to show the mpath
devices that would be coalesced if we ran ‘multipath’ now. This is exploited
by the device filtering screen.

Future of multipath in Anaconda

Overall as of RHEL6.2, the shape of multipath in Anaconda is good and what’s
more important it is flexible enough to sustain new RFEs and bugs. Those are
however bugs that I expect to appear sometime soon:

	enable or disable mpath_friendly_names in kickstart. Disabling friendly names
just means the mpath devices are called by their wwid,
e.g. /dev/mapper/360334332345343234, not ‘/dev/mapper/mpathc’. This is
straightforward to implement.

	extend support for mpath devices in kickstart in general. Currently mpath
devices should be accepted in most commands but I am sure there will be corner
cases. Difficulty medium.

	[rawhide] stop extending the udev info dictionary with ‘ID_FS_TYPE’ and
‘ID_MPATH_NAME’. Doing it this way is asking for the trouble if a dictionary
of particular mpath device is reloaded from udev without running it through
the MultipathTopology object as it will miss those entries (and DeviceTree
depends on them a lot). Difficulty hard, but includes a lot of pleasant
refactoring.

	Improve support for multipathing iSCSI devices. Someone might ask for it one
day (in fact, with the NIC bounding they already did), and it will make mpath
debugging possible on any virt machine with multiple virt NICs.

	[1]	http://akozumpl.fedorapeople.org/archive/Multipass.jpg

	[2]	http://christophe.varoqui.free.fr/

	[3]	‘man 8 multipath’

The list-harddrives script

	Authors:	Martin Kolman <mkolman@redhat.com>

Introduction

The list-harddrives script is primarily meant for use in the
kickstart %post scriptlets for listing all individual harddrives
on the system.

Output format

The list-harddrives script outputs two values per line separated
by a single whitespace:
- the device node name (eq. sda for /dev/sda)
- the size in MB as a floating point number
It does this for each individual harddrive on the system.

Example output:

sda 61057.3359375
sdb 476940.023438
sdc 30524.0

What devices are not listed

The list harddrives script will not list:
- CD/DVD drives (/dev/sr*)
- zram block devices
- software RAID (/dev/md*)
- all device mapper devices
- anything that is not a block device

Specification of the user interaction configuration file

	Version:	1.0

	Authors:	Martin Kolman <mkolman@redhat.com>

This specification aims to establish a configuration file format that can be used
to communicate information about which installation screens have been seen by the user
during the installation. Optionally the configuration file might also contain information
about which configuration options have been changed by the user and if the user has
explicitly requested post installation setup tools to be disabled.

While this configuration file is primarily meant to be read (and potentially changed)
by post installation tools (such as for example Initial Setup and Gnome Initial setup),
Anaconda will take an existing configuration file into account at startup. This is meant
to accommodate tools that are run before Anaconda is started, such as a system-wide
language selection tool that runs before Anaconda is started and which sets language
for both Anaconda and a Live installation environment.

Configuration file location

The user interaction configuration file is stored in: /etc/sysconfig/anaconda

General configuration file syntax

The configuration file is based on the INI file de-facto standard,
eq.: key=value assignments and square bracket framed section headers.

Comments start with a hash (#) sign and need to be on a separate line.
Inline comments (eq. behind section or key/value definitions) are not supported.

For Python programs this file format can be parsed and written by the ConfigParser[0] module available
from the Python standard library. For programs written in C the GKeyFile[1] parser might be a good choice.
Comparable INI file parsing and writing modules are available for most other programming languages.

Example:

comment example - before the section headers

[section_1]
comment example - inside section 1
key_a_in_section1=some_value
key_b_in_section1=some_value

[section_2]
comment example - inside section 2
key_a_in_section2=some_value

Boolean values are marked with 1 for true and 0 for false.

Example:

true_key=1
false_key=0

Toplevel namespace

The toplevel configuration file namespace can only contain section headers.

There are two section types:

	One special section called General that can contain top-level settings
not directly corresponding to any screen.

	Other sections that correspond to Anaconda spoke screens.
	Hubs are not represented as sections as there is nothing that can be
directly set on a hub in Anaconda.

	All currently visible spokes in Anaconda will be enumerated as a section headers by Anaconda in the
configuration file. Note that this can include spokes provided by addons[2], if any Anaconda addons that provide
additional spokes are present during the installation run.

The General section

The General section is optional and is not required to be present in the config file.
At the moment it can contain only the post_install_tools_disabled key.

The post_install_tools_disabled key corresponds to using the firstboot --disable command in the installation kickstart file.
This requests that the post-installation setup tools be skipped. If this key is present and set to 1, any post-installation tools
that parse the user interaction file should first make sure the tool won’t be started again on next boot, and then terminate immediately.

Naming of sections corresponding to Anaconda screens

All section headers not named General are named according to the Anaconda spoke class name. For example DatetimeSpoke
or KeyboardSpoke.

To get a list of all such spokes run the list_spokes script from the scripts directory in the Anaconda source
code tree:

git clone https://github.com/rhinstaller/anaconda
cd anaconda/scripts
./list_screens

Note that this script only lists Anaconda spokes, not spokes provided by addons[2] or Initial Setup.

It is also possible to check for the Entered spoke: entries in the /tmp/anaconda.log file during an installation
to correlate spokes on the screen to spoke class names.

Screen section namespace

Each section corresponding to a screen must contain the visited key with a value of either 1 if the user has visited
the corresponding screen or 0 if not.

Optionally each section can contain one or more keys with the changed_ prefix which track if the user
has changed an option on the screen. If the option is changed by the user, the corresponding key is set
to 1. If the given option has not been changed by the user then the corresponding key can either be
omitted or set to 0.

Example:

[DatetimeSpoke]
visited=1
changed_timezone=1
changed_ntp=0
changed_timedate=1

In this example the user has visited the date & time spoke and has changed the timezone & time/date,
but not the NTP settings. Note that the changed_ntp key could also be omitted as the user has not changed
the NTP options.

Another example:

[KeyboardSpoke]
visited=0

Here the user has not visited the keyboard spoke and thus could not have changed any options,
so all changed_* keys (if any) have been omitted.

Note that if a spoke section is missing, it should be assumed that the corresponding screen has not been visited.
On the other hand, if a screen has been visited, the section must be present, with the visited key being equal to 1.

Full configuration file example

this is the user interaction config file

[General]
post_install_tools_disabled=0

[DatetimeSpoke]
the date and time spoke has been visited
visited=1
changed_timezone=1
changed_ntp=0
changed_timedate=1

[KeyboardSpoke]
the keyboard spoke has not been visited
visited=0

The first section is the special section for top-level settings called General.
It contains only one option, post_install_tools_disabled, which is in this case equal to 0
This means that post installation setup tools should proceed as usual.
In this case (being equal to 0) the post_install_tools_disabled key and the whole General section
might also be omitted.

Next there are two sections corresponding to two screens - DatetimeSpoke and KeyboardSpoke.

The user has visited the date & time screen and has changed various options, but not the NTP settings.
On the other hand the keyboard screen has not been visited at all.

Parsing and writing the of the configuration file by Anaconda

If the user interaction file exists during Anaconda startup, it will be parsed and taken into account
when deciding which screens to show during the installation. This make it possible for secondary
installation setup tools to run before Anaconda and query the user for information.

This can be for example a tool querying the user for language settings. Then once Anaconda starts it can
skip the language selection screen as language has already been set by the tool.

Once the installation process is done, Anaconda will write out information about what screens the user has
and has not visited and optionally which settings have been changed by the user.

If Anaconda successfully parsed an existing user interaction configuration file, any valid settings present
in the file will propagate to the configuration file when it is written-out by Anaconda.

Note that comments present in the configuration file at the time Anaconda parses it might not be present
in the output file, therefore tools should not depend on comments being present or on information contained
in comments.

Parsing and writing of the configuration file by tools other than Anaconda

Non-Anaconda system configuration tools should also parse the user interaction file at startup and write it out
once done. All valid data already present in the configuration file should be kept and updated accordingly
(the user has visited a not-yet-visited screen, changed another option, etc.).

Non-Anaconda tools should try to keep comments present in the input file, but this is not strictly required.

Also note that a variable number of tools might be working with the configuration file in sequence, so no single tool
should expect that it is the first or last tool working with the configuration file.

Links

[0] https://docs.python.org/3/library/configparser.html
[1] https://developer.gnome.org/glib/stable/glib-Key-value-file-parser.html
[2] https://rhinstaller.github.io/anaconda-addon-development-guide/

Testing Anaconda

Before testing Anaconda you need to install all required dependencies,
prepare the environment and build the sources:

make -f Makefile.am install-test-requires
./autogen.sh
./configure
make

Executing the tests can be done with:

make check

To run a single test do:

make TESTS=install/run_install_test.sh check

See tests/Makefile.am for possible values. Alternatively you can try:

make ci

This has the advantage of producing Python test coverage for all tests.
In case the ci target fails there is also a coverage-report target
which can be used to combine the multiple .coverage files into one and
produce a human readable report.

Note

When using the `ci’ target you need to use a regular user account which
is a member of the `mock’ group. You can update your account by running
the command:

usermod -a -G mock <username>

Your regular user account also needs to execute `sudo’ because some tests
require root privileges!

Test Suite Architecture

Anaconda has a complex test suite structure where each top-level directory
represents a different class of tests. They are

	cppcheck/ - static C/C++ code analysis using the cppcheck tool;

	dd_tests/ - Python unit tests for driver disk utilities (utils/dd);

	dracut_tests/ - Python unit tests for the dracut hooks used to configure the
installation environment and load Anaconda;

	gettext/ - sanity tests of files used for translation; Written in Python and
Bash;

	glade/ - sanity tests for .glade files. Written in Python;

	gui/ - specialized test suite for the graphical interface of anaconda. This
is written in Python and uses the dogtail [https://fedorahosted.org/dogtail/]
accessibility module. All tests are executed using ./anaconda.py from the local
directory;

	install/ - basic RPM sanity test. Checks if anaconda.rpm can be installed in
a temporary directory without failing dependencies or other RPM issues;

	lib/ - helper modules used during testing;

	pyanaconda_tests/ - unit tests for the pyanaconda module;

	pylint/ - checks the validity of Python source code using the pocketlint
tool;

	regex_tests/ - Python unit tests for regular expressions defined in
pyanaconda.regexes;

	storage/ - test cases used to verify partitioning scenarios for success or
expected failures. The scenarios are described using kickstart snippets.
Written in Python with a custom test case framework based on
blivet [https://github.com/rhinstaller/blivet];

Note

All Python unit tests inherit from the standard unittest.TestCase
class unless specified otherwise!

Some tests require root privileges and will be skipped if running as regular
user!

Index

 _static/ajax-loader.gif

_static/down.png

_static/up.png

_static/down-pressed.png

_static/comment-close.png

_static/comment.png

_static/plus.png

nav.xhtml

 Table of Contents

 		Welcome to Anaconda's documentation!

 		Introduction to Anaconda

 		Anaconda Boot Options

 		Installation Source

 		inst.repo

 		inst.noverifyssl

 		inst.proxy

 		inst.stage2

 		inst.dd

 		inst.multilib

 		Kickstart

 		inst.ks

 		inst.ks.sendmac

 		inst.ks.sendsn

 		Network Options

 		ip

 		nameserver

 		bootdev

 		ifname

 		inst.dhcpclass

 		Console / Display Options

 		console

 		inst.lang

 		inst.singlelang

 		inst.geoloc

 		inst.keymap

 		inst.cmdline

 		inst.graphical

 		inst.text

 		inst.noninteractive

 		inst.resolution

 		inst.vnc

 		inst.vncpassword

 		inst.vncconnect

 		inst.headless

 		inst.xdriver

 		inst.usefbx

 		inst.sshd

 		Debugging and Troubleshooting

 		inst.rescue

 		inst.updates

 		inst.nokill

 		inst.loglevel

 		inst.noshell

 		inst.syslog

 		inst.virtiolog

 		inst.zram

 		Boot loader options

 		extlinux

 		leavebootorder

 		Storage options

 		inst.nodmraid

 		inst.nompath

 		inst.gpt

 		Other options

 		inst.selinux

 		inst.nosave

 		Third-party options

 		Deprecated Options

 		method

 		repo=nfsiso:...

 		dns

 		netmask, gateway, hostname

 		ip=bootif

 		ksdevice

 		Removed Options

 		askmethod, asknetwork

 		blacklist, nofirewire

 		serial

 		updates

 		essid, wepkey, wpakey

 		ethtool

 		gdb

 		inst.mediacheck

 		ks=floppy

 		display

 		utf8

 		noipv6

 		upgradeany

 		inst.repo=hd:<device>:<path> for installable tree

 		Anaconda Kickstart Documentation

 		pwpolicy

 		How to contribute

 		How to Contribute to the Anaconda Installer (the short version)

 		Anaconda Installer Branching Policy (the long version)

 		Releases

 		Example for the F25 cycle

 		Guidelines for Commits

 		Commit Messages

 		Commits for RHEL Branches

 		Pull Request Review

 		Merging examples

 		Merging the Fedora devel branch back to the master branch

 		Merging a GitHub pull request

 		Merging a topic branch manually

 		Rules for commit messages

 		Building a Release

 		Brief description of DriverDisc version 3

 		Devices which can contain DDs

 		What can be updated using DDs?

 		Selecting DD manually

 		Automatic DriverDisc detection

 		DDv3 structure

 		Initrd overlay driverdisc image

 		Firmware and module update

 		Package installation

 		Summary

 		iSCSI and Anaconda

 		Introduction

 		What is expected from Anaconda

 		How Anaconda handles iscsi

 		Libiscsi

 		Debugging iSCSI bugs

 		Future of iSCSI in Anaconda

 		Multipath and Anaconda

 		Introduction

 		What is expected from Anaconda

 		How Anaconda handles multipath

 		Debugging multipath bugs

 		Future of multipath in Anaconda

 		The list-harddrives script

 		Introduction

 		Output format

 		What devices are not listed

 		User interaction config spec

 		Configuration file location

 		General configuration file syntax

 		Toplevel namespace

 		The General section

 		Naming of sections corresponding to Anaconda screens

 		Screen section namespace

 		Full configuration file example

 		Parsing and writing the of the configuration file by Anaconda

 		Parsing and writing of the configuration file by tools other than Anaconda

 		Links

 		Testing

 		Test Suite Architecture

_static/file.png

_static/minus.png

_static/up-pressed.png

_static/comment-bright.png

